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ABSTRACT 

The effect of currents on the acoustic pressure field in an underwater 

sound channel is investigated.  Based on fundamental fluid equations, 

model equations are formulated for sound pressure while including nonuniform 

currents in the source-receiver plane. Application of parabolic-type 

approximations yields a collection of parabolic eqiiations. Each of these 

is valid in a different domain determined by the magnitudes of current 

speed, current shear, and depth variation of sound speed. Under certain 

conditions, it is possible to interpret current effects in terms of an 

effective sound speed. Using this effective sovind speed in an existing 

numerical code, we examine sound speed in a shallow water isospeed channel 

with a simple shear flow and a lossy bottom.  It is found that even small 

currents can induce very sxibstantial variations in relative intensity. 

The degree of variation depends upon current speed, source and receiver 

geometry, and acoustic frequency.  Particular emphasis is placed on intensity- 

difference predictions in reciprocal sound transmissions in the presence of 

an ocean current. 



INTRODUCTION .  , . -  , 

Ocean currents have been shown to have both interesting and important 

effects in underwater sound channels.  Major acoustical experiments have 

emphasized the role of currents^ as indicated by a recent review.   For 

2 
instance, it has been suggested that tidal currents may account for certain 

experimentally measured fluctuations in several shallow and deep water 

studies.  Sii)stantial experimental effort continues at present, in both deep 

and shallow regions (e.g., Ref.3). Within the context of ray theory, a 

number of investigations, (e.g., Refs.4-7) have presented comprehensive 

analyses of some current effects by treating cases of uniform as well as 

nonuniform currents.  Indeed, studies in both the relatively shallow water of 

8 9 
the straits of Florida and in deeper-water geostrophic flows  show how cur- 

rents can produce substantial influences. Moreover, the importance of cur- 

rents extends beyond specific ocean sites, as shown in certain acoustic 

4 10 interactions with the ocean bottom and with mesoscale features. 

Among the recent experimental work surveyed by Ref.l, particular 

interest is noted in reciprocal transmissions (RT). These arise when two 

source-receiver pairs are used to transmit signals in opposite directions 

between two locations in an underwater channel.  It can happen that the two 

signals show significant differences in phase and amplitude.  Specifically, 

Refs.ll and 12 considered several RT examples and attributed the differences 

to the presence of currents.  We note also that Ref,13 suggested that 

reciprocal differences in RT could be used to estimate components of tidal 

currents. 

The wave equation and properties of its solutions in a meditmi moving 

with uniform velocity are well understood.  One treatment of this situation 

may be found in Ref.14.  However, if the medium moves with a nonuniform 



velocity, the resulting equations and possible physical effects are much more 

complicated. The parabolic approximation in underwater acoustics  is 

attractive for considering nonuniform current effects, because of well-knovm 

advantages of this approximation. Little has been done in this area, although 

a parabolic approximation for sound propagation in a moving atmosphere has 

been examined.   Also, it has been shown  that certain numerical imple- 

mentations of the parabolic approximation essentially satis:fy acoustic 

reciprocity in the absence of currents, suggesting their possible application 

in RT v^ere currents are present. 

In this paper, we consider the effects of a depth-dependent, steady 

current upon received intensity, when a point source emits a cw signal. 

In Sec.I, we begin with the basic fluid-dynamical equations. After non- 

dimensional izing and scaling, we derive an appropriate partial differential 

equation for the pressure field in the sound channel, including both current 

magnitude and current shear effects.  Then, in Sec.II, we apply the parabolic 

approximation to this reduced equation. Depending on relative sizes of a 

current Mach nimiber, a sound-speed deviation from a reference value, and a 

nondimensional measure of current gradient, six different parabolic equa- 

tions are derived.  Three of these equations explicitly include a term 

representing current gradient.  For currents with a small shear parameter 

the current gradient can be neglected, and the remaining terms lead naturally 

to an effective sound-speed profile (ESSP), 

We study in Sec.Ill an isospeed sound channel with a lossy bottom and a 

shear current, using the ESSP and an existing numerical algorithm for the 

PE.  The source is at a fixed depth for all computations. We first consider 

relative intensity and intensity differences for different currents and 

ranges out to 20 km.  Calculations at source frequencies of 200 Hz and 500 Hz 



show range intervals of substantial intensity differences between cases with 

oppositely directed currents. Next, we find that for a fixed range, relative 

intensities corresponding to different currents can vary enormously as the 

receiver changes depth.  Finally, we examine relative intensity for currents 

varying between -1.0 ms  and 1.0 ms  at a number of ranges and depths and 

observe intensity variations of over 10 dB. We demonstrate that currents 

can induce large intensity differences in RT. Also, our nvnnerical results 

indicate that the intensity variation with current speed, range,and depth 

is complex enough that no simple characterization of properties is possible. 

I. MCfDEL FORMJIATION 

Consider an xmderwater sound channel as suggested in Fig.1(a). The 

origin of a Cartesian coordinate system (x,y, z) lies on the channel surface, 

assumed horizontal, and the bottom is parallel to the surface.  The z-axis 

points towards the bottom and the x-axis is in the vertical plane containing 

the acoustic source and receiver.  The source J  is at some depth h and 

emits a cw signal, while the point receiver /? is at depth iL .  The general 

18 
governing equations  for the motion of an adiabatic and nondissipative 

fluid in the sound channel are: 

ap/at + V- (pv) = 0, (la) 

pDv/Dt =- Vp (lb) 

and 

cT)p/Dt = Dp/Dt, (Ic) 

where D/Dt = O/Bt + x'S)-  In Eqs.(l), t is time, V is the gradient 

operator, p is fluid density, v is the fluid velocity vector, p is 

pressure, and c is sound speed. We use the convention of denoting 



dimensional quantities by a caret. An equation for c in terms of 

thermodynamic state variables p and p may be appended to Eqs.(l) to obtain 

a system of six equations in six variables. Alternatively, c can be regarded 

as a specified function of space coordinates,so that Eqs.(l) are considered 

a closed system. We adopt this latter view as an appropriate one for some 

acoustic-propagation applications. 

The quantities p, p, and v in Eqs.(l) are regarded as composed of 

ambient components, describing the state of the medium in the absence of an 

acoustic disturbance, plus acoustic perturbation components. The former are 

indicated by a zero subscript and the latter by a unit subscript, so that 

P=Po"^Pl' (2a) 

P = Po + Pl^ (2b) 

and 

^ = ^.o"^Xl- (2c) f\f        r\jC 

We assume in this paper that any changes in p due to the current v are 
o ~o 

small enough to be neglected. Moreover, other spatial variations in p are 
o 

regarded as small also, so that p is taken to be constant throughout the 

channel. Another motivation for this density assumption is the anticipation 

of parabolic approximations in Sec.II, which would be expected to reduce to 

the "standard" parabolic equation in the absence of currents.  If density 

variations were included here, then, in the absence of currents, other 

parabolic equations would be obtained (see Ref.l9) which have not yet been 

fully investigated or implemented. The ambient velocity v models the 
~o 

presence of a current.  Its direction is in the horizontal (x) direction 

so it is confined to the source-receiver plane, and it may vary with depth 

as suggested by Fig.1(b).  The sound-speed profile c(z) is also taken to 



be depth dependent, as illustrated in Fig.1(c).  Although our procedures may 

be applied to other and more general current and sound-speed structures, the 

case just described possesses many interesting features which will be 

discussed subsequently in this paper. 

Now we proceed to nondimensionalize Eqs.(l) and (2).  First, we let 

A    ^ 

X = xL, y = yL, z = zL, t = tT, (3) 

where L and T are characteristic length and time scales to be specified 

later. Next, we let U and c be a reference current speed and sound speed, 

respectively. We scale the dependent variables by letting 

V (z) = U V (z) = U u (z) i , (4a) 
"■KJ      o~o      o o  ~ 

v^(x,y,S) = 6^c^^(x,y,z) , (4b) 

and 

p^(x,y, z) = 6pP^p^(x,y,2) , (4c) 

where u , v., and p are dimensionless quantities of order of magnitude 

unity, i is the unit vector along the x-axis, and 5 and 6 are small 

dimensionless numbers. 

We substitute Eqs.(2) - (4) into Eq,(la) to obtain 

Lc"''"T"-'-ap,/at +V (Mv +6v,+M6„o,v +5 5v,)=0,        (5) O      1     ~  ^ 'vo  v~l    p l~o   p v~l 

where M denotes the Mach number U /c .  In the absence of any current, 
o o •' ' 

M=0, and a linearized balance in Eq. (5) requires 

-^ -1-^-1 
Lc T  6„= 5 . (6) o    p  V ,     ^ ' 



When Eq.(6) holds, the last term on the left of Eq.(5) is small and can be 

neglected. We note that in the absence of any acoustic perturbation, 

6 = 6.= 0, and Eq.(5) is identically zero since v depends only on z and 
V  p ~o 

has no vertical component.  Substituting Eq.(6) into Eq.(5), keeping terms 

of 0(6 ), we obtain 
V 

where 

"-^-1--1 
Ji = Lc^ T  . (8) 

Since we anticipate that the parameter \i.  is order unity for acoustic waves, 

Eq.(7) represents a scaled conservation of mass equation. 

Now we consider the scaling of Eq.(lb).  The ambient pressure in the 

absence of an acoustic disturbance is scaled as 

p^(x,y,z) = p^U^p^(x,y,z) , (9) 

where p  is dimensionless and order unity.  As with the acoustic velocity 

and density, we set 

p^(x,y,S) = SpP^c^LT" p^(x,y,z) ,        . ,;    (10) 

where p,   is  dimensionless  and order unity and  6    is  a small dimensionless 
1 P 

nvmiber.     Thus,substituting into Eq.(lb)   and algebraically  simplifying,   we 

obtain 

2 
(1+6  p,)(M'S Sv, / 9t + M  (v    • V)v   +M5  (v    • v)v 

pi V   ~i »^<5      ~  ~o V   ~0      ~  ~1 

+ M6^(v^ . V)v^ + 6^(v^ . v)vp   = - V(M2p^ + ^,6pP^) . (11) 

In the absence of an ambient current (M = 0), a linearized balance for 

acoustic perturbations requires 



6=6. C12) 
P   V 

Further, in the absence of any acoustic perturbation, 6=6 =0,and the 
V  p  -^ 

left side of Eq.(11) is identically zero since v depends only on z and has 

no vertical component.  Eliminating ambient terms as described from the 

linearized version of Eq.(ll), we find 

u3v,/at + M(v • V)v,+M(v • V)v =-iJ,Vp. . (13) 

Finally, we scale Eq.(lc) in the same manner, using n=c /c as the index of 

refraction. With the scaled variables already defined, Eq.(lc) becomes 

-2 3 
n (Li,6„Sp/at+ 6„Mv • Vp, + 6 6 v • Vp,) =M V • Vp + MM6 V • Vp, 

^ p       p ~o ~ 1  V p~l ~ 1    ~o   o    p~o ~ 1 

+ M^6 V • Vp +M.5 V • Vp^+ M,^6 ap,/at . (14) 
v~l ~ o   p~l ~ 1    p  1 

When 6 =0, the reduced equation is the balance condition to be satisfied 
V  ' 

2 
identically by the ambient terms.  Under the condition 6 =0(M ), where as 

usual M « 1, the appropriate simplification of Eq.(lc) is 

-2 -1 2 
n (Bpj^/at + MiJ, v^ • Vp^) = ^iMv^ • Vp^ + H ap^/St .        (15) 

That this condition on 6 is reasonable follows from Eq,(4b), which 
V 

implies that 

-3 2 Since M in the ocean is never bigger than 10 , the condition 6 =0(M ) and 

Eq.(16) imply that the magnitude of the velocity induced by the acoustic 

-3  -1 
disturbance is no more than about 10  ms  .  This is a reasonable and 

conservative estimate on the size of the induced current.  Alternatively, 

it can be shown from Eqs.(Aa) and (4b) that this condition means the 



acoustically induced disturbance is smaller than the ambient flow by a 

scaling factor of order Mach number. 

Equations (7), (13), and (15) represent scaled governing acoustic 

equations in our moving sound channel.  There are two classical results 

which can be recovered from these equations. When M=0, we have 

|i3p^/3t + V-v^ = 0, (17a) 

M.av^/at =-M^^ , (17b) 

and 

-2        2 
n ap^/Bt= M, Bp^/at . (17c) 

An elementary manipulation of Eqs.(17) yields 

2     2 2 2    2 
V Pj^- (M- n )a p^/at =0, (18) 

which is a scaled form of the wave equation in a stationary medium.  In the 

event that v is a constant, it can also be shown that Eqs.(7), (13),and (15) 

reduce to 

V p^ - (n n ) [a/at+(M/M-)V  -VJ^P =0, (19) 

in agreement with Eq.(11.1.4) in Ref.lA.  Equation (19) is a scaled form 

of the modified wave equation \Aich governs acoustic propagation in a medium 

moving with a steady, uniform velocity. 

Next, we wish to extract from Eqs.(7), (13),and (15) a single equation 

for acoustic pressure.  It is a straightforward calculation to show that 

these equations reduce to the pair 

V^p^ =-2(M/^i)uV^+p,Vp^^^+2Mu^AS^^^ (20a) 



#- 

9 

and 

where u' = du /dz,   and w=v,  • k is  the  z-component of acotistic velocity v  . o    o ~1  ~ "^ -' n/l 

The dimensionless ambient current component u (z) is defined in Eq.(4a). 

Now, by taking the t-derivative of Eq.(20a) and the x-derivative of Eq.(20b), 

the w term can be eliminated to give the following third order equation, 

correct to terms of order M: 

^\t-^'Attt-^-o^Axtt-2(^/^^)Vlzx=0- (21) 

Since the source has been assumed to emit a cw signal, p has the form 

p^ = A(x,y,z)e"^"*, (22) 

where u)= uff is scaled frequency and oi is frequency in radians.  Substituting 

Eq.(22) into Eq,(21) gives 

7^A+i/[iW+2mu /\ma^k   - 2i(M/|jxu)u'A     =0. (23) 

This result may be thought of as having three components.  First, when M=0, 

we recover the principal constituent 

2   2 2 2 
V A + 0) ij, n A = 0 , (24) 

which is the Helmholtz equation.  The remaining components are 0(M) correc- 

tions to the Helmholtz equation.  One of these, the third term in Eq.(23), 

depends directly upon the current u and the x-derivative of pressure A. 

The other, the fourth term in Eq,(23), depends upon the current gradient u' 

and a mixed derivative of A.  Note that the sound-speed gradient is not 

present in Eq.(24). 



10 

We are now able to make appropriate choices for the length and time 

.cale.-introduced earlier.  Picking i"!=T ensure, that tl„e derivatives 

are 0(1), since the scaled frequency is (JU= 1.  The choice L = c /o) then 
o 

/\ 
gives us the inverse wavenumber k as our length scale.  Consequently, 

|jl=l^and Eq.(23) simplifies to    ' 

2 2 2 
VA+nA+2iMnuA   -2iMu'A     =0. (25) 

ox o zx ^    ■' 

II. THE PARABOLIC APPROXIMATION 

In order to generate a parabolic approximation to Eq.(25), we first 

convert to cylindrical coordinates.  These are (r,9,z) in dimensional form, 

or (r, 9, z) in dimensionless form, \vhere 9 is measured from the x-axis.  In 

terms of the independent variables r, 6, and z, Eq.(25) in the x-z plane 

(9=0) is 

A  +r" A +A  +r" A„- + n^A+2iMu n^A - 2iMu'A  =0.      (26) 
rr     r  zz     99 or     o rz ^     -^ 

An essential feature of the parabolic approximation  is the far-field 

assumption. We make first the usual assumption of a forward-propagating 

wave, 

A= Kr,z)H^^\r) , (27a) 

where H       (r)   is  the Hankel  function of the  first kind of order zero.     For o 
T.(l)/  N T- .20 H  (r) we use the expression 

.    H^^^(r)=CTr"-^/^e^''[l- i/8r+o(r"^] , ,'  (27b) 

where a is a constant.  We remark that the second term on the right side 

of Ea.('27b) is not retained in Ref.15. although its presence here is 

useful in our scaling arguments and facilitates a validity condition 
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of the parabolic approximation.  As in Ref.l5, we assume 9-derivatives are 

typically 0(1).  For our assumptions on the current and soimd-speed structures 

and for many types of boundary conditions, scaling arguments can be used to 

conclude that IITQQ is 0(1) near the source-receiver plane.  Substituting 

Eqs,(27) into Eq.(26) and keeping terms multiplied by l/r,but neglecting 

2 
those multiplied by 1/r , we obtain 

i     -i(8r)"^i     +2it   +(4r)"'-i  +if,^-i(8r)"^4 ^+ [(n^ - 1) + ir"^(n^ - 1) ] ^ 

+ 2iMu n^n   - i(8r)'-''Tlf   - 3(8r)"■'•11;+iilf] 

-  2iMu^[t^^-i(8r)"H2^-3(8r)~H2+i*2^ = °- <^2^^ 

To proceed further, we need to estimate the sizes of terms in Eq,(28). 

For this purpose, we first write 

n^-1= (a +a)(a -c)/a^. (29a) 
o o 

We  recall  that  the choice of c    is  arbitrary,   and  for nimierical examples 

in Sec.Ill,  we choose c   =1500 ms     ,     If we let 

e = maxjc   - c|/c   , (29b) 

where the maximum is taken over depth z, then e is a small dimensionless 

number, typically ranging from 0.03 in some deep-water cases to as small as 

zero in an isospeed channel (with c = c). This parameter represents the 

largest deviation in sound speed from the reference value in the channel. 

We can then rewrite Eq,(29a) as 

n^-l=eTl(2) (29c) 

where  Tl(z)   is a  function of order of magnitude unity.     It  follows  that  TKz) 

is   given by 
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Next, we rescale the current gradient u to indicate its actual magni- 

tude. This is necessary because small currents may give rise to rather 

large current shears.  Thus, we express the current gradient as 

u^ = CG', (30a) 

where G' is an order unity function.  One way to define the parameter C,  is 

as the maximum of u' over all depths z.  In order to indicate possible 

values for C,,  we consider that depth at which maximum current shear occurs. 

In the vicinity of this depth, G'==1 (SO that C—u').  In particular, our 

scaling can be used to express u as 

u'=LU"-'-du /dz= (S /2TrfU ) (dG /dS) , (30b) 
o   o  o     o    o   o 

where the second equation in Eq.(30b) follows from our choice of L, and f is 

source frequency in hertz.  In a typical example of large current shear 

discussed in Ref.21, du /dz = 0.03 s  with a surface current speed of 
'       o ^ 

-1 
U =0.3 ms  .  It follows that in this example, Eqs.(40a) and (40b) yield 

the estimate 

C - 25/f . (30c) 

Consequently, Q  is an order-unity parameter at lower acoustic frequencies, 

and remains considerably bigger than the Mach number at mid-frequencies. 

It will be shown subsequently that the possibility of such values for C,  can 

significantly influence the potential parabolic approximations. 

When the two scales e and C,  are introduced into Eq.(28), all the 

coefficients become appropriately scaled.  We seek to balance ij; and \|r 
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terms, since they are leading terms in the parabolic equation.  There are 

also terms with coefficients like r ,   which we wish to neglect.  This 

suggests expressing the nondimensional variables r and z in terms of new 

scaled variables r' and z as follows: 

r=r +r'6" . (31a) 

and 

/.-1/2 
z= z 6   ,5 (31b) 

where the parameters r > 0 and 6 will be selected as a consequence of 

balancing requirements. We then substitute Eqs.(29c), (30a),and (31) into 

Eq,(28) and set r' = 0.  This value for r' is appropriate because any 

balancing must hold at the minimum range r=r . We obtain 

5 i|r^,^/- 6 i(8r^)"-'-i|;^/^,+ 2i6t^,+ 6(4r^)"-'-t^,+ 6t^,^/- i6(8r )"-'-i|r , , 

+ eTli|;+ eiTlr" 1);+ 2i(l+ eTpMu [6\lr / - i(8r Y^ h%   , - 3(8r )"-'-j+iijf] 

-2iMCG'[5^/V. /-i(8r )"^6^/\, ,-3(8r )"^6^/^t '^^^'"^^   ,] = 0 . ^t        O Zi        o z z 

(32) 

Examination of Eq.(32) shows that parabolic approximations are found by 

2 
keeping terms of 0(6) and neglecting terms of 0(6 ).  Furthermore, omitting 

terms with r  coefficients suggests that we require r =0(6~ ).  This 
o o 

provides one possible lower limit in range for application of the parabolic 

approximations.  Anticipating our choice of 5, we also note that terms like 

e6 and M6 will be negligibly small compared to either e, 6, or M, and so 

Eq.(32) reduces to 

r   z z        ^       o z 

= 0(5,M,e,eM6"\ MC5^^^) . (33) 
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The appropriate choice of 6 is now determined by the relative sizes of e, 

M,and C,  in Eq.(33). 

1/2 
Suppose first that M ^ 0(e  ),  This type of parameter relationship might 

exist in a moving isospeed, or nearly isospeed, channel, for example, where e is 

zero or nearly so.  The proper balance of terms imposes 6=M, and we 

obtain from Eq,(33) 

Ziijf z+t / / - 2u ■ii+lQi^^^G'ii   , = 0(M). (34a) 

This new parabolic approximation permits both current magnitude and current 

shear to influence sound propagation.  Retention of the fourth term on the 

left of Eq,(3Aa) depends upon the size of Q.     Since terms of 0(M) have been 

1/2 
neglected, it follows that Eq.(34a) is appropriate for Qi        >  0(M), i.e., 

Q > 0(11^'^).     For C smaller, i.e., Q ^  0(M^'^), then Eq. (34a) reduces to 

2±ii^,+ ^^,^,-2uJ=0(K) ,   ' (34b) 

We described a specific example of current shear previously. Let us use 

numerical values from that example, along with one natural form of the 

1/2 
order condition C, >  0(M  ).  Equation (30c) implies for this example that 

for frequencies less than about 800 Hz, the shear term should be kept in the 

parabolic equation.  Many applications involve frequencies that are sub- 

stantially lower than this.  Therefore, the presence of the shear term in 

Eq.(34a) could be significant. 

Now we consider the possibility of slightly larger relative sound- 

1/2 
speed variations, with 0(e) ^ M <0(e  ).  In this situation, the current 

term in Eq.(33) still tends to dominate the sound-speed term, but the latter 

is no longer smaller than previously neglected terms.  Consequently, the 

proper balance of terms continues to imply 5=M, and Eq.(33) becomes 
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2iilr ,+ 'i!   ,   / + eM"-'"ni|i - 2u ^^IQ^^'^G'^   / = 0(M) .        (35a) 

Equation (35a) is another new parabolic approximation, containing effects 

of three mechanisms:  soxjnd-speed variation, current magnitude, and 

1/2 
current shear.  As before, Eq,(35a) is appropriate for C, > 0(M  ).  For 

smaller current shears, Eq.(35a) reduces to 

2iilf z+t , /+eM"-'-'I]\|r- 2u i|;=0(M) . (35b) 

This equation shows that current-magnitude effects can influence the para- 

bolic approximation in a way directly analogous to sound-speed variations, 

as will be further discussed later. 

2 
Next, we consider the case where 0(e ) <M ^ 0(e).  As for the 

previous cases, there are physical situations which correspond to this 

parameter relationship.  For example, a shallow-water channel located in a 

temperate latitude might have a small relative sound-speed deviation during 

the colder months, and this deviation may be comparable in size to the Mach 

number of a tidal current in the channel.  Given this parameter relation- 

ship, a proper balance of terms in Eq.(33) now occurs when 6= e. 

Neglecting small terms as before, we obtain 

2iii; ,+ i)r , , + Tit - 2Me"-'-u t+2Me"-'-^^CG'lf / = 0(e).       (36a) 

The same physical terms are retained in Eq.(36a), but now with a slightly 

different order condition for neglected terms. Whether the current shear 

term should be kept again depends upon whether its asjonptotic order is 

larger than neglected terms, i.e., £ > 0(e  M" ).  For example, if M=0(e), 

1/2 3/2 
then this condition is ^ > 0(e  ), while if M=0(e  ), C,  should be order 

one.  Clearly, the shear term becomes potentially more significant as 
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current  strength  increases.     On the other hand^   if the shear term is  suffi- 

ciently small,   it  follows  that 

2i^   z + t   /   /+Tlt-2Me"''"u ilf = 0(e). (36b) 

2 
Finally, we note the remaining case when M ^ 0(e ).  This situation 

might arise in a deep ocean channel with a large relative sound speed 

deviation.  Once again, 6=e,and from Eq.(33), 

2i* /+* /^/ + 11t+2Me"-'-/^CG>^/ = 0(e) . (37a) 

1/2 
The current magnitude term 2Me  u i|f that was present in Eq. (36a) is absent 

in Eq.(37a).  Consequently, in this case the current structure has no 

explicit effect upon sound propagation in the channel. However, it is 

still possible for the current shear to affect the propagation, in the 

3/2 -1 
situation ^ > 0(e  M ).  If ^ is small enough, then the shear term can 

also be neglected, and Eq.(33) reduces to 

2iil;^/+i[f^,^,+ T]t=0(e) , (37b) 

which is the scaled form of the standard PE in Ref.l5. 

The parabolic eqxiations which we have developed above may be written 

in dimensional form as follows.  First, Eq.(3Aa) becomes 

2ik t- + l-- - 2k^(a /a )i^+(2/a )(du /di)i/.==0 , (38a) 

where dimensional ambient current component u (z) =U u (z).  In addition 
o     o o 

to the usual single-r and double-z derivative terms in Eq.(38a), there 

are two other terms, due to current shear and current magnitude. For 

brevity, we refer to these two contributions as CS and CU, respectively. 

Equation (34b) is 
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which contains  only CU.     The dimensional   forms  of both Eqs.(35a)   and   (36a) 

are the  same: 

2iko%+?£2 + k^(ti^-l)*- 2k^(Wc^)t+(2/c^)(dWd2)t2 = 0. (39a) 

This parabolic equation contains CS and CU and an additional term arising 

from sound-speed variations, abbreviated by SS, Similarly, Eqs.(35b) and 

(36b) lead to the same result 

2t\i:^+\^ + ^l{n-l)l(-2vl(,uJ^^)\=0, (39b) 

possessing both CU and SS,  Finally, Eqs.(37a) and (37b) become 

^      ^ 
2ik *-+t- + k^n^-l)t+(2/£ )(dii /dz)t^ = 0       (40a) 

and 

2ik^^.+t^^ + k^(n -1)^=0. (AOb) 

The former has CS plus SS, while the latter has only SS. 

Equations (38a) - (AOb) represent the six parabolic approximations that 

incorporate all appropriate combinations of the physical mechanisms repre- 

sented by terms that we denote by CS, CU, and SS. Moreover, in addition to 

these results, our derivations have determined ordering conditions on the 

parameters M, s, and ^ which give asymptotic regions of validity for our 

equations. We next present one way to illustrate these regions, and 

indicate the corresponding parabolic approximations by our Fig.2.  Possible 

values of M, e, and C,  occupy one octant of a three-dimensional parameter 

space.  Figure 2 represents a planar section of this three-dimensional 

space, formed by the plane C= C • where C^ is an arbitrary value of the 
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1/2 
current-shear parameter.  Region I represents values M 2: 0(e  ) and 

includes the isospeed channel (e = 0) as a subcase.  Parabolic approximations 

in I contain CU but not SS.  Region II corresponds to values with 

1/2 2 
0(e  ) > M > 0(e ).  It includes sound channels with both currents and 

moderate sound-speed deviations, such as those that might occur in a fairly 

shallow ocean in cooler months.  Parabolic approximations in II contain 

2 
both CU and SS.  Finally, Region III embraces M ^ 0(e ) and such physical 

situations as a deep ocean SOFAR channel.  Region III parabolic approxima- 

tions include SS but not CU. We note that our examples suggest that in a 

very general sense, the transition from Region I to III corresponds to a 

transition from shallow to deep sound channels.  Each region in Fig.2 is 

further divided into subregions A and B, corresponding to locations of 

higher and lower shear, respectively.  The dashed curve is the intersection 

of the plane C,= Q    with the surface in (e, M, Q-space which forms the 

subregions A and B.  In Region I and that portion of Region II indicated, 

1/2 
this surface is expressed as ^ =M  , and in the remainder of Region II 

3/2. -1 
and Region III, the equation is ^ = e  M . The subregions below the 

dashed curve are regions of relatively higher shear, while those above the 

curve have relatively lower shear. As seen in our derivations previously, 

the importance of current shear in the A subregions is manifested by the 

inclusion of CS in the parabolic approximations.  Figure 2 shows all 

relevant terms, using our notations, in the various subregions. We remark 

that for different values of ^ , the position of the dashed curve would be 

different.  Also, we mention that the boundary curves of the various sub- 

regions have been determined as asymptotic order conditions, and as such 

are "fuzzy" rather than sharp. We choose to represent them in Fig.2 as 

sharp curves only to aid visualization of the validity regimes. 
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It is important to note that Eqs.(38b) and (39b) can be transformed 

into a form suitable for analysis and solution by existing niimerical 

algorithms for the parabolic equation.  That is, both these equations can be 

converted into the form of Eq.(AOb) by introducing an effective sound 

speed c.  This quantity should be defined by the following equation: 

(a/c)2-i=(a/a)2-i-2u/a . (Aia) 
.   o o o o 

Solving for c, we have 

H=a[l-(2ya^)(a/a^)^]-^/^ cAib) 

or,   to  first order in Mach number, 

c Sf a[l + u^/a^] . (41c) 

An alternative  form which is  a consistent approximation of Eq. (41c) is 

c 2: a+u   . . (41d) o 

Equation (41d) expresses the effective sound speed profile (ESSP) as the 

actual sound speed shifted by the current.  If Eq.(41a) is substituted 

into Eqs.(38b) or (39b), the result is 

2ik^^j+^^2 + k^(5 -l)t=0, (41e) 

where n=a /c. The form of Eq.(41e) is exactly the same as Eq,(40b). 

Consequently, presently available numerical algorithms for solving Eq,(40b) 

are capable of predicting current effects in low-shear channels, once the 

current is incorporated into the sound speed profile using Eq.(41d). 

Similarly, CU and SS in Eq.(39a) can be combined, and CU in Eq.(38a) is 

mathematically equivalent to SS in Eq.(AOa).  In all cases, any current 

effects on initial and boundary conditions are assimaed negligible. 
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Notwithstanding the analogous effects of CU and SS, it is important to note 

that the presence of CS in Eqs.(38a), (39a), and (AOa) requires modifications 

in existing parabolic-approximation algorithms for their numerical solution. 

III. -NUMERICAL RESULTS 

In this section, we demonstrate the acoustic importance of ocean 

currents by calculating transmission loss for an example sound channel. 

This channel is depicted in Fig.3(a).  A point source J emits a cw signal 

and is located at a depth of 25 m. -The receiver R  is at depth h^, and the 

channel depth is 100 m.  The sound speed is taken to be constant throughout 

the water, and c = c = 1500 ms  .  As specified earlier for models in this 

paper, we assume a steady horizontal current in the J-f^ plane.  As suggested 

in Fig.3(b), the current component u is chosen to decrease linearly from its 

value at the surface to zero at mid-depth, and remains zero from mid-depth 

to the bottom of the channel. We use the surface speed for the reference 

current speed, i.e., U = |u (0)|.  As discussed at the end of Sec.II, the 

current structure induces an ESSP in the channel.  The exact sound-speed 

profile is shown in Fig,3(c).  The ESSP, computed from Eq.(41d), is shown in 

Fig.3(d).  For example, for a surface-current component of 1,0ms" , the ESSP is 

1501 ms  at the surface and 1500 ms  at mid-depth and below.  If the surface- 

current component is -1.0 ms  , the ESSP is 1499 ms  at the surface and 

1500 ms" at mid-depth and below.  These cases are sketched as large-dashed 

and small-dashed lines, respectively, in Figs.3(b) and 3(d).  The parameter 

-4 
values are e = 0 and M= 6.7x10  ,  For the lowest source frequency 

-2 1/2 
(f = 200 Hz) used in this example, C= 2.4x10  . Thus, C ^ 0(M  ),and 

Region IB is appropriate. 
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The niimerical algorithm used in this example to solve Eq.(Ale) is 

described in Ref.22,  Using an implicit finite difference (IFD) scheme^ 

the algorithm solves standard parabolic equations of the form of Eq.(41e). 

The formulas of Eqs.(41a) - (41d) show that Eq.(38b) can be transformed 

into Eq.(Ale) via the introduction of an ESSP.  Computation of the solution 

requires specification of boundary and initial conditions. We assume a 

pressure release condition at the upper ocean surface and a lossy bottom, 

which extends 150 m below the channel bottom as suggested in Fig.3(a). 

The bottom parameters were selected"to correspond to an isospeed example 

presented in Refs.22 and 23.  The sound speed in the bottom is 1550 ms  , 

-3 
the bottom density is 1.2 gem , and the attenuation is 1 dB/wavelength. 

The model introduces an artificial strongly-absorbing layer of an additional 

100 m depth beyond the assumed bottom.  Also, it supplies one necessary 

matching condition of the nearfield and farfield solutions, using a Gaussian 

source distribution to describe the acoustic field near the source.  Relevant 

numerical parameters, such as depth and range mesh sizes, are identical to 

those used in Ref.22.  The numerical quantity computed is relative intensity 

of the received signal, denoted by I: 

2 

1 = 10 l°gio(p(^'^)/Pref) • (^^^a) 

In Eq.(42a), p   is  the acoustic pressure generated by the signal at 

r =1 m, and 

p(r,z) = ^(?,S)H^^^k^r), (42b) 

which is the dimensional form of Eq.(27a). 
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Figure A is a plot of relative intensity for a signal f= 200 Hz^ shown 

to a range of 20 km.  For brevity we define u (0)= u  .  The solid curve I, 
o     oo 1 

is the result when u  =0, i.e., corresponding to an isospeed channel with no 

ambient current. The lone-dashed curve I„ results when u  = 1.0 ms  . while 
2 oo ' 

the  short-dashed curve I„  is   for u      =- 1.0 ms     ,     For all three curves, 
3       oo ' 

there is a general tendency for intensity to decrease with range.  Of course, 

this is because of cylindrical spreading from the Hankel function in Eq.(42b). 

As range increases from 2 im, the three curves remain quite close, out to 

about 6 km.  At this range, the no-current case I^ undergoes a sharp fade 

to -119 dB.  By contrast, both I„ and I_ remain at about -80 dB.  As range 

continues to increase, significant differences continue to appear in the 

curves. For u  = 1.0 ms  , I„ appears to show a shift toward the source 
00 7     2"" 

relative to I,, while I. for u  =-1.0 ms  shifts away from the source. 
1 J     oo ^ 

This shifting, in addition to differences in the shapes of the curves, can 

account for sizeable differences in relative intensity at certain ranges. 

For example, at r= 13 km, I is about -74 dB, I is about -88 dB at the 

bottom of a fade, and I„ is decreasing and is about -69 dB.  Thus, at this 

range, a current of plus (or minus) 1.0 ms  causes an intensity drop (or 

increase) of 14 dB (or 5 dB).  Furthermore, it is significant that intensity 

differences of several dB are not confined to isolated points, but are 

maintained over range intervals of a few km.  On the other hand, there are 

range intervals where intensity differences due to currents are small, such 

as near r=ll,5 km where the three curves almost simultaneously intersect. 

However, in contrast to range intervals of large intensity differences, those 

of small intensity differences tend to be smaller, of the order of hundreds 

of meters.  These observations shed light on some aspects of reciprocal 
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transmissions (RT),  Since J and R are at equal depths in Fig.4, switching 

their respective locations is equivalent to reversing the direction of the        *" 

current. Thus, the difference between the short-dashed and long-dashed 

curves predicts the measured intensity difference of the signals between 

J-R pairs placed in a current of 1.0 ms  magnitude at the surface. As 

mentioned previously, these differences can be large at certain points, 

can exceed several dB over large range intervals, and are small over some 

other intervals. 

Intensity differences are emphasized in Fig.5.  The three curves shown 

here represent signed differences among the three curves which are shown 

separately in Fig.4.  The solid- and long-dashed curves show intensity 

differences from the no-current case (I-) when the current is present and 

is either 1.0 ms  or -1.0 ms  at the surface. As observed more clearly 

than in Fig.4, there are large range intervals possessing significant 

intensity differences.  The short-dashed curve, as the difference between 

I^ and I in Fig.4, represents the intensity difference of RT.  For ranges 

beyond 6 Ion, this curve exhibits range intervals of not insignificant length, 

in which net difference in signal intensity is several dB. Moreover, at 

particular range values, such as r=13.5, 14.5, 17.5, and 18 km, intensity 

differences are almost 20 dB. Although the three curves in Fig.5 are not 

periodic, the patterns are roughly accounted for by the shifting of the 

no-current intensity curve described in connection with Fig.4. 

In Fig.6, we again plot relative intensity for three cases. As in 

Fig.4, I  corresponds to u  =0, I,^ to u  =1,0 ms' , and I^ to u  =-1.0 ms"''" 
i oo     2    oo        -^     3    oo 

for f = 200 Hz. However, the receiver is now located at the bottom of the 

channel (where h^= 100 m), as opposed to Fig.4 where iv, = 25 m. There are 

significant differences between Figs.4 and 6. All three curves in Fig.6 
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are shifted downward approximately 15 dB from those in Fig.4.  This results 

from the fact that the receiver in the latter figure is on the interface 

of a considerably lossy bottom. As in Fig,4, these curves track each other 

closely for small values of r, and current effects become apparent beyond 

6 km. However, the rough shifting of the no-current curve by the presence 

of current, which was readily seen in Fig.A, is more irregular in Fig.6. 

When u  = 1.0 ms  , there are two extremely deep fades, one at about 12 km 

(to -135 dB) and the second at about 19 km (to -129 dB).  In Fig.4, current 

values did not induce such deep fades for the range values examined. We 

remark that as in Fig.4, there are several range intervals which contain 

large intensity differences.  Finally, we indicate that nothing can be 

said about RT in Fig.6, because the source and receiver are at different 

depths for calculations shown. 

In Fig.7, the receiver depth is again 25 m, but now the source 

frequency is f= 500 Hz, instead of f= 200 Hz as in Fig.4. As in both 

Figs.4 and 6, the solid curve represents the relative intensity in the 

absence of any current, -vAiile the long- and short-dashed curves represent 

surface currents of 1.0 ms  and -1.0 ms" , respectively. We note the 

noisier behavior of intensity at the higher frequency in Fig.7, and observe 

that the overall pattern of the curves is notably more complex than in 

either Figs.4 or 6.  For small ranges, the curves nearly coincide, as 

observed in earlier cases. At about r=5 km, we observe a separation in 

the curves, indicating that current effects begin to be noticeable at a 

shorter range than when f= 200 Hz.  Moreover, instead of the current 

producing a rough shift to the left or right of the solid curve, a general 
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shift upward or downward is seen. When u  =-1.0 ms~ , there is an 
oo ' 

overall shift upwards of several dB, while in contrast, a general shift 

downward by a somewhat larger amount occurs for u  =1.0 ms~ .  Beyond 
oo 

about 15 km, intensity shifts can be very dramatic.  For instance, the 

difference between I„ and I is at least 5 dB, with a maximum of about 20 dB 

near 19 km. We recall that when u  =- 1.0 ms~ , the current induces an ESSP 
oo ' 

which possesses a positive gradient down to mid-depth, while when u  = 1.0 ms~ , 
' oo        ' 

the ESSP has a negative gradient.  In terms of ray theory, which is reasonably 

accurate at the higher frequency used in Fig.7, we would expect the negative 

gradient to refract more rays to the bottom than would otherwise occur in 

the absence of any current.  Similarly, the positive gradient would tend to 

refract rays upward.  Since the assumed bottom is lossy, particularly at 

higher frequencies, we would expect to observe higher intensities for 

negative currents and lower intensities for positive currents.  This is 

exactly the qualitative effect visible in Fig.7.  It is interesting to note 

that the same features are not evident at these ranges for the lower 

frequency used in the comparable Fig.4. 

Figure 8(a) depicts the relative intensity versus receiver depth iL 

for f= 200 Hz and a range of r= 7 km.  Each curve corresponds to a different 

current, and as before I, results from no current, I„ from u  =1.0 ms~ . 
i 2      oo        ' 

and I  from u  =-1,0 ms  .  Figure 8(b) is analogous, but is for r=10 km. 

In both figures, the intensity drops sharply near both the surface and the 

bottom. At the former location, the pressure-release condition accounts for 

the drop at the surface, while the lossy bottom accounts for the decrease 

in intensity there. The overall downward shift of intensity at iL = 100 m, 

which was noted in Fig.6, is apparent in Fig.8(a), but is absent in 

Fig.8(b).  This happens at r= 10 km because all three intensities are near 
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fades for iL = 25 m (see Fig.4), \iiiile at iL = 100 m, the intensities are all 

approaching peaks (see Fig.6).  Consequently, the decrease near h_ = 100 m in 

Fig.8(b) is to a relative, rather than an absolute, minimum of the intensity 

curves.  In Fig.8(a), the maximum intensity difference between I„ and I is 

about 15 dB and occurs near h^= 100 m.  Also at iL = 40 m, all three curves 

intersect, so that neither current induces any intensity change.  In ' 

contrast. Fig.8(b) shows the largest intensity difference of about 20 dB 

at iL = 30 m, and the curves nearly coincide at the bottom. 

In Fig.9, we plot relative intensity versus surface current component u 
oo 

for six values of source-receiver range.  The receiver depth is 25 m, as is 

the source depth, and f= 200 Hz,  The effect of varying magnitude and sign 

of u  has remarkably different effects at different ranges. As u  varies 
oo oo 

from -1.0 ms  to 1,0 ms  , the intensity changes almost linearly at 5, 7, 

8, and 9 km.  The intensity decreases about 2 dB at 5 and 8 km, decreases 

4 dB at 9 km, and increases 2 dB at 7 km. This behavior contrasts with 

that at 6 km and 10 km.  At 6 km, the intensity drops sharply as the current 

increases from u  = - 1,0 ms  . When the surface current reaches zero, 
oo ' 

intensity drops to -119 dB, a change of over 40 dB. As u  increases towards 
oo 

1.0 ms  , intensity increases.  At that speed, the intensity differs from 

that at u  =- 1.0 ms  by 2 dB.  For r= 10 km, intensity continually 

increases as the current increases, and the net change in intensity between 

the two currents is about 15 dB. 

Several observations can be made about RT in light of results in Fig.9. 

Suppose there were two source-receiver pairs submerged at 25 m depth in 

this channel, so that the source-receiver direction parallels the current 

direction.  If the surface current component were 1.0 ms  for one J-f^ pair, 

then it would be -1.0 ms  for the reciprocal pair.  For differing range 
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between the pairs, the intensity differences measured at each receiver 

would also be expected to change.  At a separation of 5 km, the intensity 

difference at both ends of the figure is about 2 dB, while at 10 km, the 

difference is about 15 dB.  Note that at 6 km, the intensity difference 

between the receivers is only about 2 dB, despite the fact that the relative 

intensity undergoes its greatest variation with current at this range. Now 

suppose that the surface-current speed is halved, to 0.5 ms  . At 5, 6, 7, 

and 8 km, the intensity difference measured between the two receivers from 

Fig. 9 is only 1 dB or smaller. At 9 km, the difference is 2 dB, and at 

10 km, the difference is as great as 7 dB.  Thus, even with this smaller 

surface current, ranges exist at which large intensity differences occur. 

It is also important that at some ranges, intensity differences are small. 

Consequently, an experimenter using source-receiver pairs and attempting to 

sense current effects in part from intensity measurements in RT must neces- 

sarily take measurements at appropriate source-receiver ranges.  Otherwise, 

current effects may not be expressed in intensity measurements. 

Figure 10 illustrates a set of curves similar to those in Fig.9, but 

for a receiver depth of 75 m.  At r=5 km and 9 km, relative intensity 

increases, and the net difference is about 3 dB over the interval of varia- 

tion of u  from -1.0 to 1.0 ms  .  At r= 6 km and 10 km, intensity decreases oo '        -' 

by about 1 dB, while at 7 km the intensity decreases by A dB.  For r= 8 km, 

the intensity behaves differently, decreasing to a minimum at about 

u  =- 0.1 ms  and then increasing, with a net difference of about 4 dB oo ' 

over the interval. Thus, the behaviors of the relative intensity curves 

are completely different from those of Fig.9.  For instance, the deep fade 

at 6 km in Fig.9 disappears from Fig.10, and the net difference at 10 km is 
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much smaller. The slope of each curve at 5, 1,   and 9 km has changed sign, 

and the overall behavior of the 8 km curve has changed. 

The results illustrated in Figs,3-10 clearly show that the presence 

of currents can have a profound effect lijion relative intensity.  These 

niimerical results are sufficiently intricate to make apparent that general 

predictions of the behavior of intensity with respect to any one parameter 

are generally impossible to make.  Relative intensity appears to depend in a 

complex way upon current, source frequency, source depth, receiver depth, 

and source-receiver range.  Concerning RT, our results indicate that source- 

receiver pairs may observe significant intensity differences over some range 

intervals, but could see only small intensity differences at other ranges. 

Thus, experimental data taken in RT may or may not include current-induced 

effects on intensity differences. 

IV. SUMMARY 

In this paper, we study effects of currents and current shear on 

underwater sound propagation using the parabolic equation method.  To 

highlight current and current shear effects, we focus on the particular 

case in which boundary interfaces are horizontal, and both sound-speed and 

current are dependent on depth only. Also, we take the current to be 

horizontal and in the vertical source-receiver plane.  The source emits a 

cw signal. We emphasize, however, that our procedures can be applied to 

more general problems, and this will be done in future work. 

From basic fluid equations, a time-independent equation for the 

acoustic pressure field is derived.  The standard assumptions of the parabolic 

approximation are applied to this governing equation.  It is found that the 

approximate scaled equation contains three small parameters.  These are: 
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e,   measuring the maximtim relative deviation of sound speed from a reference 

value; Mach number M^ the ratio of a reference current magnitude to a 

reference sound speed; and Q,   measuring the maximum relative current shear. 

It is essential to consider the relative sizes of these three parameters to 

determine the appropriate parabolic approximation.  In fact, a family of 

parabolic equations is found, each of which is valid for different relative 

magnitudes of these parameters.  For some of these equations, we are able 

to employ the notion of an effective sound-speed profile (ESSP), which is 

actual sound speed modified by the addition of current.  For these parabolic 

equations, the ESSP allows incorporation of current effects in existing 

numerical implementations of the parabolic equation. However, other members 

of the family of parabolic equations would require new numerical 

implementations. 

We then present numerical computations for an isospeed channel of 

100 m depth and with a lossy bottom.  The cw source is at depth 25 m.  The 

current is taken to have a bilinear structure with surface current decaying 

linearly to zero at mid-depth and remaining zero below this point. We 

compute relative intensity as a function of range for surface currents 

having different speeds and directions.  The results, at different depths 

and frequencies, show that there are range intervals with significant 

intensity differences compared to the no-current case. There are also range 

intervals that have small intensity differences.  In addition, we consider 

intensity as a function of depth and find that significant intensity differ- 

ences tend to occur over large depth intervals as well.  Finally, we show 

intensity as a function of the surface current component, and results indicate 

many different intensity-variation behaviors as the surface current changes. 

When source and receiver are at the same depth, intensity differences in 
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reciprocal transmissions can be described from our results by reversing the 

sign of the current.  We find that there are source-receiver separations at 

■which large intensity differences exist^ as well as those where there are 

small differences. We discuss implications of our numerical examples in 

the interpretation of experimental reciprocal data.  In general, we find 

that variations in intensity with current profile for various frequency, 

source and receiver depth, and source-receiver range combinations are 

sufficiently complicated that there can be no simple characterization of 

current effects on intensity. 
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FIGURE LEGENDS 

FIG.l,  (a) Horizontal ocean channel and coordinate systems, (b) general 

current profile, (c) general sound-speed profile. 

FIG.2. Plane of Mach number M and maximimi relative sound speed deviation e, 

showing significant terms in parabolic approximations. 

FIG.3.  (a) Isospeed ocean channel, (b) current profile, (c) sound- 

speed profile, (d) effective sound-speed profile. 

FIG.4. Relative intensity I versus range r for three current profiles; 

hg = 25 m = -1 h^, h= 100 m, c= 1500 ms  , f = 200 Hz 

FIG.5.  Difference in relative intensity AI versus range r, for three 

current profiles. Parameters as in Fig.4. 

FIG.6. Relative intensity I versus range r for three current profiles; IL =100 m, 

other parameters as in Fig.4. 

FIG.7.  Relative intensity I versus range r for three current profiles; f= 500 Hz, 

other parameters as in Fig.4. 

FIG.8. Relative intensity I versus receiver depth iL for three current profiles; 

(a) r= 7 km, (b) r=10 km; other parameters as in Fig.4, 

FIG.9. Relative intensity I versus surface current speed u^  for six 

ranges; h^= 25 m, other parameters as in Fig.4, 

FIG.10. Relative intensity versus surface current speed u  for six ranges; 

iL = 75 m, other parameters as in Fig.4. 
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